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Abstract

The thermal decomposition of an explosive material is accompanied by generation of a certain
amount of heat and, under certain conditions, can lead to the well-known phenomena of self-igni-
tion. Therefore, it is of great importance to predict whether or not an explosive material will ignite
under given conditions (specimen mass and shape, surrounding temperature, etc.).

An own computer program named THERMEX, for studying thermal ignition phenomena, is
discussed in this paper. The program uses the finite difference method to describe the reactive heat
conduction phenomena in infinite slab, cylindrical, and spherical geometry of explosive materials.

The analysis of the stability requirements of the finite difference method applied in the program
is carried out. The program is tested by the comparison of calculated results with the results of calcula-
tion by other authors. Reasonable agreement was found under identical computational conditions.

Keywords: explosives, finite difference method, reactive heat conduction, self-ignition, thermal
explosion theory, thermal initiation

Introduction

If the specimen of an explosive is heated, and if it decomposes according to the
zero-order kinetic law, then the specimen heat balance can be described by the fol-
lowing equation [1]:

ρ
∂
∂

λ ρc
T

t
T QAe= ∇ + −2 ( )E/RT (1)

where T is temperature (K); t – time (s); c – specific heat capacity (J kg–1 K–1);
ρ – density (kg m–3); λ – thermal conductivity (W m–1 K–1); ∇ 2 – Laplacian operator;
Q – heat of decomposition (J kg–1); E – activation energy (J mol–1); A – pre-expo-
nential factor (s–1), and R – universal gas constant (J mol–1 K–1).

The left-hand side of Eq. (1) gives the rate of the heat build-up in the specimen
of an explosive; the first term in the right-hand side is the rate of heat loss into the sur-
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roundings; while the last right-hand term is the rate of heat generation due to exother-
mic reactions obeying the zero-order kinetic law.

The thermal ignition of explosives in ammunition is always the problem for
concern. This is the reason why the explosive community is permanently search-
ing for an efficient method for solving reactive heat conduction problem in explo-
sives. The analytical solution to the heat conduction problem in the absence of
chemical reactions, the so-called non-reactive heat conduction, is relatively easy
to deduce, however, the analytical solution of the heat conduction equation with
chemical reactions, the socalled reactive heat conduction, is out of question.
Thus, the approximate techniques and the numerical methods are the most fre-
quently subjects of investigation in this field.

Different simplifications to Eq. (1) have been proposed in order to calculate
the critical conditions of self-ignition. Semenov [2], for example, allowed the
temperature to be uniform through a sample, and reactions to follow the
zero-order kinetic law. He was than able to compare the heat generation and the
heat loss rates, and to derive the critical conditions of self-ignition. Frank-
Kamanetskii [3]tried to find steady state solution of Eq. (1) in the case of the
zero-order kinetic law, but without assuming the temperature to be spatially uni-
form through a specimen, i.e. applying the heat transport by convection.

To obtain the time-dependent solution of the heat of equation, different nu-
merical techniques were proposed. Zinn and Mader used a numerical method
based on a Fourier series spatial representation of solutions to obtain ignition
times for slabs, cylinders, and spheres of the explosive material [1, 6]. Merzhanov
and Abramov [4] were the first that applied the finite difference method to solve
the heat conduction equation with the zero-order kinetic reaction model. Ander-
son developed the finite difference code for the one-dimensional heat conduction,
based on the zero-order kinetic model and the Crank-Nicolson method. This code
treats the problems of layered media in slabs, cylindrical, or spherical geometry,
and incorporates temperature dependent thermal properties and phase transitions
[7].

Since the thermal decomposition model plays a crucial role in each numerical
method, some authors have tried to incorporate more complex kinetic model into
computer codes based on the finite difference method. For example, Isler used
successfully the power law kinetic model (dα/dt=kαn) to describe the thermal ig-
nition of a nitrocellulose propellant [5, 8]. McGuire and Tarver used 2-3 steps
chemical decomposition models, deduced from available kinetic data for some
explosives, and incorporated them to a thermal conduction code based on the fi-
nite difference method, obtaining a good agreement with experimental results [9].

Generally, one can note that the finite difference method is widely used to de-
scribe the reactive heat conduction phenomena in explosives, in connection with dif-
ferent kinetic models used to describe the thermal decomposition of explosives.

Some problems connected with the application of the finite difference method,
such as stability and truncation requirements, ignition and boundary conditions, cor-
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rect kinetic model, temperature-dependent thermal properties of an explosive, etc.,
are still subjects of improvements. This paper discusses some of these problems.

The numerical technique applied in THERMEX

In the special case of infinite long cylinders, infinite slabs, and sphere, the Laplacian op-
erator (∇ 2) in the general heat conduction equation (Eq. (1)) reduces in one dimension
[6]:

∇ = +
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where r is radius of cylinder (or sphere). The integer m has a value 0 for slabs, 1 for
cylinders, and 2 for spheres. In the case of an infinite slab r replaces by slab thickness
(x). Thus, for example, Eq. (1) for an infinitely long cylinder will have the form:
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The time dependent solution of Eq. (3) can be obtained by applying the finite
difference method, i.e. by approximating partial derivatives with finite differences.
The finite difference scheme of an infinitely long cylinder whose time-dependent
temperature field we wish to compute from an initial temperature distribution, sur-
rounding temperature, and boundary conditions may be represented by Fig. 1.

The radius of an infinitely long cylinder (rc) is divided into k cells, thickness of
which is ∆r (∆r=rc /k). The initial temperature (at t=0, i.e. j=0, where j is a time index)
is specified at individual mesh points (T0,i

j=0 , i=0 to k–1, where i is a space index),

J. Therm. Anal. Cal., 68, 2002

SUÆESKA: THERMAL INITIATION OF EXPLOSIVES 867

Fig. 1 The finite difference scheme of an infinitely long cylinder



while the temperature at the cylinder surface (Ts
j ) is specified by the boundary condi-

tions (Eqs (11) and (12)).
For the case of an infinitely long cylinder the space derivatives in Eq. (3), in a

time j, may be approximated by the following finite differences [7]:
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For the case of spheres and infinite slabs the space derivatives will be [7]:
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The time derivative in Eq. (3) may be replaced by its simplest finite difference
approximation [7]:
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where ∆t is a time increment.
By replacing the space and time derivatives in Eq. (3) by the finite differences

(Eqs (4)–(7)), the equation for the calculation of the temperature distribution along a
space co-ordinate, at time t j+1, can be derived. For example, in the case of an infi-
nitely long cylinder this equation will be:
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It follows from the above equation that the temperature distribution along a cyl-
inder radius at time t j+1 is evaluated from the temperature distribution at earlier time
(t j), where:

t j+1=t j+∆t (9)

By an analogous way the equations for the calculation of the temperature distribu-
tion along a sphere radius or a slab thickness can be obtained from Eqs (5)–(7) and (3).

Initial and boundary conditions

In additions to the finite difference approximation to the reactive heat conduction
equation, the approximations to the initial and boundary conditions should be in-
cluded in order to calculate time-temperature distribution along a specimen space
co-ordinate.
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The initial conditions give an initial temperature distribution (at t=0) along a speci-
men co-ordinate. In the most usual way the initial conditions are given in the form:

T Ti
j=0

0,i
j=0= where i=0, 1, 2, 3 ... k–1 (10)

The boundary conditions give the temperature at a specimen surface at any time
(Ts

j ). The simplest case is when the specimen surface temperature remains constant dur-
ing the whole process. In this case the boundary conditions can be written in the form:

Ts
j =Te=const. (11)

where Te is the surrounding temperature. However, in the case of convective heat
transfer from an ambient fluid to a specimen surface, the boundary conditions are
given by the following equation [7, 8]:
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where ε is the heat transfer coefficient (W m–2 K–1)

Results and discussion

On the basis of the numerical technique described above, the computer program
named THERMEX was written. Having in mind that an explicate finite difference so-
lution to the differential equations is often conditionally stable, and that the correct
choice of space and time increments is of crucial importance to obtain accurate solu-
tions, the first step in this work was to analyse the influence of time and space incre-
ments on the results of calculations.

As a test model hexogen (RDX) spheres 25.4 mm in diameter were used. The
spheres, being initially at the temperature of 25°C, were subjected instantaneously to
the surrounding temperatures higher than the critical ones – in the 180–260°C range.
The same test model was used by Zinn and Mader [1, 6], and by Anderson [7] to
study numerically the thermal ignition phenomena of RDX (Table 1).

The values of the kinetic and thermal parameters of RDX used in calculations
are given below [1, 6, 10]:

ρ = 1.8 g cm–3 Q = 2093 J g–1

E = 199 kJ mol–1 A = 3.16 1018 s–1

c = 2.093 J K–1 g–1 λ = 0.293 W m–1 K–1

The times to the thermal ignition at given surrounding temperature are calcu-
lated for several different space and time increments, applying the boundary condi-
tions given by Eq. (11). As an example, the results of calculations for surrounding
temperature of 240°C are shown in Fig. 2.
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It is evident from Fig. 2 that times to ignition depend strongly on the values of
space and time increments. For the small values of time increments, the time to igni-
tion-time increment relationships is practically linear. The slopes and the intersec-
tions of individual time to ignition-time increment curves with Y axis depend on the
space increment.

By the linear extrapolation of the time to ignition-time increment data given in
Fig. 2, the values of time to ignition corresponding to ∆t→0 were derived for individ-
ual space increments. In this way the dependence of time to ignition at ∆t→0 (te ∆t→0)
on space increment is obtained (Fig. 3).

By the extrapolation of the non-linear dependence times to ignition-space incre-
ment, given in Fig. 3, time to ignition at ∆r→0 (te ∆t→0, ∆r→0) for specified surrounding
temperature is obtained. The values of times to ignition for several surrounding tem-
peratures, obtained by this procedure are given in Table 1, along with the values ob-
tained by other authors.
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Fig. 2 The dependence of calculated times to ignition of RDX sphere on time incre-
ment for different space increments at surrounding temperature of 240°C

Fig. 3 The dependence of calculated times to ignition of RDX sphere on space incre-
ment at surrounding temperature of 240°C



It follows from Table 1 that the ignition times obtained in this way are in good
agreement with Zinn and Mader and Anderson calculations. However, a normal way
of the calculation of ignition times and the space and time temperature profiles inside
a specimen is to use sufficiently small time and space increments. If time and space
increments are not sufficiently small, small errors in data may generate a large total
error. Thus, the correct choice of space and time increments is of crucial importance.

Table 1 Times to ignition for RDX spheres calculated by different authors

Surrounding
temperature/°C

Time to ignition/s

Zinn and Mader
[1, 6]

Anderson, code
TEPLO [7]

Anderson, code
TEPLO [7]*

This work (code
THERMEX)

180 1000 1030 1200 1051.8

200 420 458 593 466.9

220 120 162 183 166.1

240 33 42.9 43.8 44.0

260 10.5 10.1 10.0 10.3

*Time to ignition is calculated taking temperature-dependent heat capacity and taking the melting of
RDX into account

The analysis carried out in this work has shown that, in order to obtain the times
to ignition which do not differ more than 1% in respect to the times obtained by the
extrapolation of data to ∆r→0, the space increment should be less than 0.06 mm for
the 260°C surrounding temperature; less than 0.15 mm for the 240°C surrounding
temperature, etc. (Fig. 4).

It is obvious from Fig. 4 that, in order to obtain a high level of accuracy (e.g. the
error in the calculation of the times to ignition less than 1%), the space increment has
to be very small – from some tenth of microns to some hundreds of microns, depend-
ing on the surrounding temperature.
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Fig. 4 The error in calculated values of times to ignition vs. space increment for several
surrounding temperatures (where: error=(te–te ∆t→0, ∆r→0)100/te ∆t→0, ∆r→0)



Further analysis has shown that the time increment, which enables the times to
ignition to be calculated with a small error, may be chosen on the basis of the stability
criterion given by the equation [7]:

λ
ρc

t

r
f

∆
∆( ) 2

< s (13)

According to Richtmyer’s results (cited in [7]) the finite difference method is
stable if fs<0.5. The results of the presented work have shown that, in order to obtain a
ignition times which differ less than 1% in the respect to ignition times obtained by
the extrapolation to ∆t→0, the value of fs should be less than 0.01 (Fig. 5). It should
be noted that almost the same value of fs was obtained for all surrounding tempera-
tures in the 180–260°C range.

On the basis of this criterion, it follows that, at the surrounding temperature of
260°C and the space increment of 0.06 mm, the time step should be less than 0.0001 s
in order to obtain the ignition times that differ less than 1% in respect to the ignition
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Fig. 5 The error in values of calculated ignition times vs. value of (λ/ρc)(∆t/∆r2)

Fig. 6 The comparison of experimentally obtained and calculated ignition times for an
RDX cylinder 25.4 mm in diameter



times obtained by the extrapolation to ∆t→0; for the surrounding temperature of
220°C the space increment should be less than 0.4 mm, and the corresponding time
increment should be about 0.02 s, etc.

Times to ignition are also calculated for a 25.4-mm diameter RDX cylinder, and
compared with the experimentally obtained values. The results of the comparison are
shown in Fig. 6. A reasonable good agreement was found between the experimentally
obtained and calculated ignition times, as well as between the results of calculation in
this work and those obtained by Zinn and Mader [1].

Space- and time-temperature profiles

Although the time to ignition and the critical temperature are the essential parameters
for the prediction of self-ignition possibility of an explosive specimen, we are usually
interested in having details of the heat flow, i.e. to have the temperature-time profile
at a given position within a specimen, and the temperature-radius profile at a given
time.

It is known that the time to ignition decreases with the surrounding temperature
increase (Table 1), as well as that the ignition of the specimen occurs at a position
closer to the specimen surface with the increase of the surrounding temperature. The
last is visible from Fig. 7, which shows the spatial distribution of the temperature for
RDX spheres subjected to the several different surrounding temperatures.

For the surrounding temperature of 220°C the ignition occurs at the position
r/rs≈0.95, while at the same time the centre of sphere remains relatively cool during
the whole induction period. For low surrounding temperatures, e.g. 180°C, the igni-
tion occurs at the centre of sphere. At the same time the surface of the sphere remains
at the surrounding temperature. The results of the calculation are in agreement with
the results of the calculation by Zinn and Mader [1].

The above mentioned is also visible from Fig. 8, showing the time-temperature
distribution at two locations within the RDX sphere subjected to 190°C surrounding
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Fig. 7 The calculated temperature-radius profiles for the times near the end of induction
period (t=te0.95) for RDX sphere 25.4 mm in diameter, being initially at 25°C



temperature. At the location r/rs≈0.9 the temperature increases relatively quickly,
while at the centre of sphere the temperature reaches the same value only at the end of
the induction period. The results of calculation are again in the reasonable agreement
with the results of calculation by Zinn and Mader [1].

Conclusions

The presented numerical model for studying the initiation phenomena of explosives,
based on the finite difference method, can be used to predict the time to ignition, and
critical temperature, as well as to obtain the temperature-time, and the tempera-
ture-space co-ordinate profiles of an explosive material specimen.

It is shown that the accuracy of the solution is greatly affected by the values of
the space and time increments. The correct value of the space increments for a given
surrounding temperature may be determined by preliminary calculations (Figs 2 and
3), while the correct value of time increments for a given space increment may be de-
termined on the basis of the stability criterion (λ/ρc)(∆t/∆r2)<0.01.

The results of the calculations for the selected test model are in reasonable
agreement with the results of calculation by some other authors, making thus THER-
MEX program a useful tool in studying the thermal initiation phenomena.
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